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ABSTRACT. I provide a summary of the session on "Active Galactic Nuclei and Quasar Absorption

Lines," with contributions by J. Wampler, A. Wolfe, W. Sargent, J. Bechtold, M. Pettini, and M. Shull. The

topics included new observations of QSO absorption lines by the Keck Telescope HIRES spectrometer and
the Hubble Space Telescope. An overview of the major scientific issues in this field is followed by a brief

summar)' of a panel discussion that addressed future instrumental possibilities that could answer some of

these questions.

1. OVERVIEW: WHY IS HIGH RESOLUTION

NEEDED?

Because the spectra of quasars and other active galactic

nuclei (AGN) are dominated by broad emission lines, one

might regard these objects as unlikely "'scientific drivers" for

high-resolution spectroscopy. In fact, the narrow absorption

lines from H I and heavy elements seen toward AGN provide

some of the most powerful incentives for observations with

the largest telescopes using spectrographs with resolutions of

30,000-100,000. Many of these absorption systems are be-

lieved to arise from the disks, halos, and collisional debris of

intervening galaxies (Bahcall and Spitzer 1969; Weymann et

al. 1981). However, a class of absorbers known as the "Ly-

man a forest." because of their high abundance shortward of
the 1216 ,_ Lycc emission line, is believed to represent a

population of true intergalactic clouds (Sargent et al. 1980;

Weymann 1993).

Expressed in velocity units, the broad emission lines in

AGN are typically 10,000 km s -j wide and the narrow emis-

sion lines are _1000 km s-_ wide, while the metal absorp-

tion lines have typical widths of 10-30 km s-t or less. Re-

cent surveys of Ly_ forest clouds have found mean or

median doppler widths (b values) ranging between 30 and 35

km s-l (Rauch et al. 1992, 1993). For reference, thermal

broadening of hydrogen lines at temperature T=(10* K)T,,

produces a Doppler width b=(2kT/mH)m=(12.9 km

s-l)T_ ':. One study at 6-7 km s-I resolution (Pettini et al.

1990) suggested that some b values could be as low as 10

km s-_. The latter obse_'ations were surprising, since ther-

mal equilibrium of low-density, low-metallicity gas photo-

ionized by quasar radiation should result in temperatures in

excess of 30.000 K (Do.nahue and Shull 1991). Recent data

from the Keck Telescope (Tytler 1994) show that most of the

HI (Lya forest) lines have 22<b<36 km s -x, but some

may be narrower. In view of the nonequilibrium flows found

in recent numerical hydrodynamic models of baryonic infa]/

in the Cold Dark Matter (CDM) or Mixed Dark Matter

(MDM) paradigm (Cen and Ostriker 1994; Katz et al. 1995),

these issues have gained renewed importance.
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Line profile studies of the metal-line and Lya forest

clouds require 3-6 krn s-I resolution (at good signal to

noise) to distinguish line asymmetries and to search for sub-

structure. Reliable studies of thermal widths require similar

resolution, particularly to separate blends and settle the de-
bate over low b values. Studies of nuclear outflows can be

done at 50-100 km s-_ resolution, as seen in the phenomena

of "associated absorbers" or "satellite emission lines" (Ul-

rich et al. 1985; Clavel et al. 1991; Stocke et al. 1994).

2. MAJOR ISSUES

In this section, I describe some of the current scientific

issues in the field of quasar absorption lines. This discussion
is brief, and readers interested in more extensive information

should consult review papers from recent conferences, such
as the 1988 STScl Symposium (Blades et al. 1988). the 1992

Tetons Meeting (Shull and Thronson 1993), and the 1994

Munich (ESO) Conference (proceedings in press, 1995).

2.1 Origin and Physical State

Historically, Lya absorption lines have been subdivided

into three classes, depending on their column density, N(H I)
(cm-2). With some latitude in the definitions, these classes

are: (i) the Lycr forest clouds [I2.5<1og A'(H I)<17.0]: (2)

the Lyman Limit (LL) systems [16.5<tog 3,'ill I)<20]: and
the damped Lya systems [20.3<1og N(H I)<21.8]. The Lya

absorbers have been observed to have DoppIer widths rang-

ing from b = 10- 5 0 km s- 1 with a mean around 30 km s- 1.

The Lya line-center optical depth is given by %
=(0.253),V13b;0 t. where 2\'13 is the H t column density in

units 10_3 cm -2 and b:,o is the Doppler width in units 30

km s-z. For systems with log N(H I)_>14.5. it becomes in-

creasingly' difficult to infer an accurate H I column density'.

owing to saturation (curve-of-growth) problems. In fact, the

existence of a continuous po_er,law distribution ranging

from 10 t2._ up to 10 t7 cm -2 in the Lye forest is not at all

certain because of this problem. Some authors (Kulkarni and

York 1993; bleiksin and bladau 1993) have suggested a cut-
off in the numbers of systems with N(H I)>I0 la_ cm-:. The

situation should soon be clarified by' studies of the higher



implemented,oneshouldprobablyregardthesimulatedHI
distributionswithsomeskepticism.Nevertheless,thesimu-
lationshavechangedthepictureof thepossiblegeometries
of theLyaabsorbersandtheyillustratethecomplexitiesthat
mightbeexpectedto arisefrom shocks,velocity-space
"caustics,"andnonequi',ibriumeffectsof bulkmotionson
thegasdensitiesandtemperatures.

Relatedquestionsalsoarisein thesescenarios.Arethe
absorbersassociatedwithgalaxiesinanyway--asextended
HI disks,cloudsin halos,companiongalaxies,or debris
clouds?Arethe)'confinedbygravity,staticthermalpressure,
rampressure,orall of theabove?Dotheabsorbingclouds
retainkinematicsignaturesfrom theseprocesses?High-
resolutionspectra,capableofstudyinglineprofilesatbetter
than10kms-I, couldaddresstheseissues.

2.3 Evolution of Metallicity

One of the most intriguing recent scientific results in this

field is the detection of trace heavy elements in high-column-

density ("damped") Lya absorbers (Meyer et al. 1989; Pet-

tint et al. 1994; Wolfe et al. 1994). These elements most

likely came from stars, but of what type and at what redshift?

Determining the evolution rate of metallicity as a function of

redshift, Z(z), is a critical spectroscopic problem for large

telescopes. The key elements are: C, N, O, St, Mn, Mg, Fe,

and trace species such as Zn. Ni, Cr, Co, and Ti. Accompa-

nying the study of the overall metallicity history is the prob-

lem of estimating the degree to which massive stars have

contributed to the production of hot gas and ionizing (Lyman

continuum) photons. Until recently, most astronomers have

interpreted the absorption lines from Lyman-limit systems

and damped Lyor systems as gas photoionized by a power-
law (hard) radiation field from quasars. The possibility of

supernovae enrichment and hot-star contributions to the local

radiation field (Giroux et al. 1994; Sutherland and Shull

1995) makes the interpretation far richer scientifically. From

current models of massive-star evolutionary tracks (Schaller

et al. 1992), stellar atmospheres (Kurucz 1992), and heavy-
element yields (Woosley and Weaver 1995), it now appears

that a population of massive stars (8-85 M o) is capable of

producing significant amounts of oxygen, hot gas, and Ly-

man continuum (LyC) photons. Quantitatively, the efficiency

of LyC energy production, normalized to metal production, is

given by the dimensionless parameter (Madau and Shull
1995),

r/l.yc= M,,,c2 '_0.002, (3)

where M,,, is the mass of metals produced and L,, is the

spectral luminosity (ergs s -l Hz -2) of radiation in the LyC

(v_v0). If the metals are produced steadily, from redshift

z'_ 5 to the present, the ionizing photons from hot stars could

rival the background from AGN.

2.4 Reionization of the Intergalactic Medium

Because of the observed absence of the HI Gunn-

Peterson effect back to redshifts z'_4, the IGM must have

been highly ionized by this epoch, presumably by quasars
and perhaps also by hot stars. As noted earlier, the He It

Gunn-Peterson effect (Jakobsen et al. 1994; Tytler 1994)

may be caused by line blanketing by the Lyoe forest if clouds
are present down to columns N(H I)"_1012 cm -2 and if the

ionizing radiation field is sufficiently soft above 4 Ry to al-
low He II/H I>100 (Madau and Meiksin 1994; Giroux et al.

1995). A portion of the required softness (4 to 1 Ry ratio)

could be provided by the "filtering" of quasars' spectra by
the photoelectric absorption in intervening Lyoe clouds. De-

tailed models, however, suggest that the sources still must

have spectral indices a,>l.4, somewhat steeper than the
canonical v-I AGN spectrum. An important set of future

issues in this area involve understanding the relative roles of

quasars and starburst galaxies in producing this radiation
field.

3. PANEL DISCUSSION

The final portion of this session consisted of a panel dis-

cussion with audience participation. The panelists were Jill

Bechtold, Wal Sargent, Joe Wampler, Max Pettini. and Art

Wolfe, with Mike Shull as moderator. After the panel's com-

ments, the discussion was opened to comments from instru-

mentalists and the audience. Five general questions were
asked of the panel:

(1) What spectral resolution is needed?

(2) What signal-to-noise ratio is needed?

(3) What is the need for high resolution in the infrared?

(4) What further progress can be made on D/H from the

ground?

(5) What is your "wish list" for new instruments and

technology?

Comments by Wampler: In his presentation, Joe

Wampler described evidence for Mg II and A1 III "v,aves" in

broad absorption line (BAL) quasar spectra, perhaps indica-
tive of a line-locking mechanism. Studies of these features

require extremely high signal-to-noise spectra at high reso-
lution (R> 100,000).

Comments by Wolfe: Art Wolfe discussed the results of a

survey of 570 QSOs containing 61 damped Lyc_ systems in

which Zn, Cr, Co, Ni, and Fe absorption lines were analyzed.

The first major result was that, at high redshift (z_ 3-4), the

amount of baryonic matter in these systems approaches that

attributable to luminous galaxies today (f'/d_fl,_f],_0.005).
A second major result, from the Keck Telescope, was a de-
termination (Wolfe et al. 1994) of accurate abundances for

trace metals in a damped absorber at z=2.3 to,yard PHL

957. At 8 km s-I resolution, these data showed [Zn/H]

=-1.55-'-0.11, [Cr/H]=-l.79_0.10, and [Ni/H]=-2.13

-+0.18, with an upper limit on [O/H]<-0.97. A key use for

high resolution comes from the need to separate several lines

blends (Zn II, Cr II, Co It, Mg I) from these features. The ki-

nematics of these metal systems suggest vertically thick

disks with rotational velocities Vrot_200 k.m S-I over scale

lengths 5-10 kpc.

Comments by Sargent: Wal Sargent presented a number

of Keck HIRES spectra of absorption systems, including Na I

D lines in a tidal tail of a galaxy (z=0.0518) in front of a
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